A New Synthesis of Pyrrole Derivatives from Tris(isopropylthio)cyclopropenylium Perchlorate and Thioureas Hideo Kojima and Kazuhiko Yamamoto

Laboratory of Organic Chemistry, Osaka Women's University, Sakai, Osaka 590, Japan

Keiichi Nakamura and Hiroo Inoue*

Department of Applied Chemistry, College of Engineering, Osaka Prefecture University, Sakai, Osaka 593, Japan Received April 1, 1996

The reaction of tris(isopropylthio)cyclopropenylium perchlorate (1) with sodium thioureides 3a-c, prepared from thioureas 2a-c and sodium hydride, in dry acetonitrile gave the pyrrole derivatives 4a-c, respectively, in high yields.

J. Heterocyclic Chem., 33, 1417 (1996).

The cyclopropenyl cations are known to undergo ring opening by nucleophiles to form vinylcarbene intermediates which are converted into the cyclic compounds by ring closure [1]. Recently we have established that nitrogen heterocycles such as pyrrolizines [2], indolizines [3], pyrrolo[2,1-b]azoles [4], and pyridines [5] are prepared from tris(isopropylthio)cyclopropenylium perchlorate (1) and sodium pyrrolide, 2-pyridylmagnesium bro-

mide, 2-lithiated azoles, and α -lithiated isocyanides, respectively. In relation to these reactions, we now report the novel example of the synthesis of pyrrole derivatives **4a-c** using **1** and thioureas **2a-c**, as shown in Scheme 1.

The reactions were carried out as follows. A solution of 1 in dry acetonitrile was added to a suspended solution of thioureids 3a-c, prepared from thioureas 2a-c and sodium

hydride, in dry acetonitrile and the mixture was stirred under nitrogen for 1 hour. The reactions with 3a,b were carried out at room temperature, but that with 3c at 0° because of being unstable at room temperature. After the removal of acetonitrile in vacuo, the chromatography of the residue gave the pyrrole derivatives 4a-c in high yields. The structures of 4a-c were determined by their ir, ¹H nmr, ¹³C nmr, and mass spectra and elemental analyses. The ¹H nmr spectrum of 4a showed a singlet (3H, δ 3.54) for the methyl protons at the N-position of the pyrrole ring and a singlet (6H, δ 2.85) for the methyl protons of the dimethylamino group. Its ¹³C nmr spectrum showed four signals (4C, δ 108.5, 122.2, 124.2 and 146.5) for the pyrrole ring carbons. The structures of 4b and 4c were elucidated by a similar method described in the case of 4a.

The reaction is thought to proceed by the pathway shown in Scheme 2. The nucleophilic attack of the nitrogen anion of **3a-c** on 1 forms vinylcarbene intermediates **5a-c**. The intramolecular cyclization of the carbenic carbon of **5a-c** with the >C=S group gives **4a-c** through the intermediary formation of thiiranes **6a-c** followed by desulfurization.

The above results provide a new route to the pyrrole ring system using 1 as a synthetic reagent.

EXPERIMENTAL

The ir spectra were obtained on a Perkin-Elmer model 1600 spectrophotometer. All ¹H nmr (270 MHz) and ¹³C nmr (68 MHz) spectra were measured on a JEOL JNM-GX 270 FT nmr spectrometer using deuteriochloroform as a solvent and chemical shifts were reported in parts per million down field from tetramethylsilane as an internal standard. Mass spectra were obtained at 70 eV with a Finnigan mat TSQ 70 spectrometer. Elemental analyses were performed by a Yanaco CHN CORDER MT-3. Column chromatography was performed on silica gel (Wakogel C-300).

General Procedure for the Preparation of Pyrroles 4a,b.

To a suspended solution of sodium hydride (60% dispersion in mineral oil, 24 mg, 0.6 mmole) in dry acetonitrile (2 ml) was added thioureas 2a,b (0.5 mmole) and the mixture was stirred under nitrogen at room temperature for 1.5 hour. A solution of the cyclopropenyl cation 1 (180 mg, 0.5 mmole) in dry acetonitrile (2 ml) was added to the solution. After 1 hour, the solvent was evaporated in vacuo and the residue was purified by column chromatography on silica gel using hexane-dichloromethane (4:1) as an eluent.

2-(Dimethylamino)-3,4,5-tris(isopropylthio)-1-methylpyrrole (4a).

This compound was obtained as a yellow oil, yield 92%; ir (neat): 2959, 2925, 2863, 1520, 1448, 1375, 1364, 1236, 1154, 1050, 953 cm⁻¹; ¹H nmr (deuteriochloroform): δ 1.16 (d, 6H, J = 6.7 Hz), 1.20 (d, 12H, J = 6.7 Hz), 2.85 (s, 6H), 3.19 (sep, 1H, J = 6.7 Hz), 3.40-3.62 (m, 2H), 3.54 (s, 3H); ¹³C nmr (deuteriochloroform): δ 22.8, 22.9, 23.1, 31.0, 38.5, 38.6, 40.5, 44.1, 108.5, 122.2, 124.2, 146.9; ms: m/z 346 (M⁺).

Anal. Calcd. for $C_{16}H_{30}N_2S_3$: C, 55.44; H, 8.72; N, 8.08. Found: C, 55.16; H, 9.00; N, 7.80.

2-(Dimethylamino)-3,4,5-tris(isopropylthio)-1-phenylpyrrole (4b).

This compound was obtained as a yellow oil, yield 87%; ir (neat): 2960, 2924, 2863, 1522, 1499, 1448, 1423, 1376, 1317, 1236, 1154, 1051, 947 cm⁻¹; ¹H nmr (deuteriochloroform): δ 0.97 (d, 6H, J = 6.7 Hz), 1.25 (d, 6H, J = 6.7 Hz), 1.26 (d, 6H, J = 6.7 Hz), 2.66 (s, 6H), 2.78 (sep, 1H, J = 6.7 Hz), 3.50 (sep, 1H, J = 6.7 Hz), 3.67 (sep, 1H, J = 6.7 Hz), 7.19-7.23 (m, 2H), 7.39-7.43 (m, 3H); ¹³C nmr (deuteriochloroform): δ 22.7, 23.1,

23.2, 38.4, 38.5, 39.9, 43.7, 109.0, 123.3, 125.2, 127.6, 128.2, 129.1, 138.5, 147.7; ms: m/z 408 (M⁺).

Anal. Calcd. for C₂₁H₃₂N₂S₃: C, 61.72; H, 7.89; N, 6.86. Found: C, 61.42; H, 8.19; N, 6.56.

2,3,4-Trihydro-6,7,8-tris(isopropylthio)-1-methylpyrrolo[1,2-a]-pyrimidine (**4c**).

A suspended solution of sodium hydride (60% dispersion in mineral oil, 24 mg, 0.6 mmole) in dry acetonitrile (2 ml) was cooled to 0°. To the solution was added 3,4,5,6-tetrahydro-1methyl-2-pyrimidinethione (2c) (65 mg, 0.5 mmole) and the mixture was stirred under nitrogen at 0° for 1.5 hours to give cyclic thioureide 3c. A solution of the cyclopropenyl cation 1 (180 mg, 0.5 mmole) in dry acetonitrile (2 ml) was added to the solution. After 1 hour, the solution was allowed to warm to room temperature and acetonitrile was evaporated in vacuo. The residue was purified by column chromatography on silica gel using hexane-dichloromethane (4:1) as an eluent to give 4c as a vellow oil in 75% yield; ir (neat): 2958, 2924, 2861, 1538, 1463, 1428, 1379, 1363, 1327, 1284, 1236, 1192, 1153, 1098, 1049, 999, 929 cm⁻¹; ¹H nmr (deuteriochloroform): δ 1.16 (d, 6H, J = 6.7 Hz), 1.17 (d, 6H, J = 6.7 Hz), 1.21 (d, 6H, J = 6.7 Hz, 1.98-2.07 (m, 2H), 3.05-3.24 (m, 4H), 3.28 (s, 3H), 3.52 (sep, 1H, J = 6.7 Hz), 3.98 (t, 2H, J = 6.1 Hz); ¹³C nmr (deuteriochloroform): 8 22.7, 22.8, 23.1, 29.7, 38.9, 39.5, 40.9, 41.1, 42.6, 50.6, 95.9, 117.4, 126.5, 144.1; ms: m/z 358

Anal. Calcd. for C₁₇H₃₀N₂S₃: C, 56.93; H, 8.43; N, 7.81. Found: C, 57.07; H, 8.70; N, 7.53.

Acknowledgment.

The present work was supported by the Grant-in-Aid for Scientific Research (No. 05650885) from the Ministry of Education, Science and Culture, Japan.

REFERENCES AND NOTES

- [1] M. S. Baird, Top. Curr. Chem., 144, 137 (1988).
- [2] H. Kojima, K. Ozaki, N. Matsumura, and H. Inoue, *Chem. Letters*, 1499 (1989); H. Kojima, N. Matsumura, and H. Inoue, *Can. J. Chem.*, 70, 1 (1991).
- [3] H. Kojima, Y. Kinoshita, N. Matsumura, and H. Inoue, J. Heterocyclic Chem., 28, 2059 (1991).
- [4] H. Kojima, K. Yamamoto, Y. Kinoshita, and H. Inoue, J. Heterocyclic Chem., 29, 1473 (1992).
- [5] H. Kojima, R. Yamamoto, Y. Kinoshita, and H. Inoue, J. Heterocyclic Chem., 30, 1691 (1993).
- [6] D. Sexferth and W. Tronich, J. Am. Chem. Soc., 91, 2138 (1969).